
C memory model
Lecture 03.03

Outline

• Constants

Buffer

Code

Constants

Globals

HEAP

Stack

Memory memorizer

• Constants stores all the constants. This memory is read-only

• Globals stores global variables – variables visible to all
functions

• Stack stores variables of a currently executing function

• Heap is reserved for dynamic memory allocation

Three-card trick

#include <stdio.h>

int main() {

char *cards = "JQK";

char a_card = cards[2];

cards[2] = cards[1];

cards[1] = cards[0];

cards[0] = cards[2];

cards[2] = cards[1];

cards[1] = a_card;

puts(cards);

return 0;

}

Where is the Queen?

What is printed?

Compile and run: Linux

• On different machines and operating systems:

gcc -o trick trick.c && ./trick
bus error

trick.exe has stopped working

segmentation error

segmentation fault

What do you think the problem is?

A. The string can’t be updated

B. We’re swapping characters outside the string

C. The string isn’t in memory

D. Something else

READ ONLY !

String literals live in a different
place: constants

char *cards = "JQK";

• We cannot update string “JQK” through pointer cards

CONSTANTS

String literals cannot be updated

• When the computer loads the program into memory, it puts
all of the constant values—like the string literal “JQK”—into
the constant memory block. This section of memory is read
only.

• The program creates the cards pointer variable on the stack.
The cards variable will contain the address of the string
literal “JQK.”

• When the program tries to change the contents of the string
pointed to by the cards variable, it can’t: the string is read-
only.

JQK\0 cards

Why compiler did not warn us?

• Because we declared the cards as a simple char *,

the compiler didn’t know that the variable would

always be pointing at a string literal.

• To avoid this problem never write code that sets a

simple char pointer to a string literal value like:

char *s = "Some string";

Correctly define pointers to string
literal
char *s = "Some string";

• There’s nothing wrong with setting a pointer to a string

literal - until you try to modify a string literal. Instead, if

you want to set a pointer to a literal, use the const

keyword:

const char *s = "some string";

• That way, if the compiler sees some code that tries to

modify the string, it will give you a compile error:

s[0] = 'S';

trick.c:7: error: assignment of read-only location

Fix: copy literal into char array

char cards[] = "JQK";

• Now cards is not a pointer. Cards is now an array,

which lives on the stack. It is filled with copies of

characters from the constant when the stack

frame for main is loaded

JQK\0 JQK\0

cards

Make a copy of the string in a section of memory that can
be amended

If you plan to modify: use array not
pointer

char * cards = "JDK";
char cards[] = "JQK";

• It’s probably not too clear why this changes anything. All strings
are arrays. But in the old code, cards was just a pointer.

• In the new code, it’s an array. If you declare an array called cards
and then set it to a string literal, the cards array will be a
completely new copy. The variable isn’t just pointing at the
string literal. It’s a brand-new array that contains a fresh copy of
the string literal.

JQK\0 JQK\0

cards

Reminder: array is not exactly a
pointer
• An array name is a constant address, while a pointer is a

variable:

int x[10], *px;

px = x; px++; /** valid **/

x = px; x++; /** invalid, cannot assign a new value **/

• Also, defining the pointer only allocates memory space for
the address, not for any array elements, and the pointer
does not point to anythingmeaningful.

• Defining an array (x[10]) gives a pointer to a specific place in
memory and allocates enough space to hold the array
elements.

char * vs. char []

• There is an important difference between these definitions:

char acards[] = “JQK"; /* an array */

char *pcards = “JQK"; /* a pointer */

• acards is an array, just big enough to hold the sequence of
characters and ’\0’. Individual characters within the array
may be changed but acards will always refer to the same
storage.

• pcards is a pointer, initialized to point to a string constant;
the pointer may subsequently be modified to point
elsewhere, but the result is undefined if you try to modify
the string contents.

JQK\0

JQK\0

acards:

pcards:

